Three-Dimensional Solids Toolkit POSSIBLE SOLUTIONS

	Volume	Surface Area
Prisms	$\begin{aligned} & \mathrm{V}=(\text { (\# cubes in bottom layer }) \cdot(\text { (\# layers }) \\ & \mathrm{V}=\quad \text { (area of base) } \quad \cdot \text { (height) } \end{aligned}$ An oblique prism has the same volume as a right prism of the same base area and height.	S.A. $=$ Add up the areas (area $=$ length \cdot width $)$ of all the rectangles that make up the solid An oblique prism does not have the same surface area as a right prism with the same base area and height.
Cylinders	$\begin{aligned} & \mathrm{V}=(\# \text { cubes in bottom layer }) \cdot(\text { (\# layers }) \\ & \mathrm{V}=\text { (area of circular base }) \cdot \text { (height }) \\ & \mathrm{V}=\quad\left(\pi r^{2}\right) \cdot h \end{aligned}$ An oblique cylinder has the same volume as a right cylinder of the same base area and height.	
Pyramids	$\begin{aligned} & \mathrm{V}=\frac{1}{3} \text { (volume of prism with same } \\ & \text { base and height) } \\ & \left.\mathrm{V}=\frac{1}{3} \text { (area of base) } \cdot \text { (height }\right) \end{aligned}$	S.A. = area of polygon base $+$ area of lateral triangular faces Lateral surface area does not include the base.

Three-Dimensional Solids Toolkit POSSIBLE SOLUTIONS

Cones	Volume	Surface Area
	$\begin{aligned} & \mathrm{V}=\frac{1}{3} \text { (volume of cylinder w/ same } \\ & \mathrm{V} \text { base and height) } \\ & \mathrm{V}=\frac{1}{3} \text { (area of circular base) } \cdot \text { (height) } \\ & \mathrm{V}=\frac{1}{3} \quad\left(\pi r^{2}\right) \quad h \end{aligned}$	Unroll the cone to create a sector. The radius of the sector is the slant height, l, of the cone, and the arc length is the circumference of the base of the cone, $2 \pi r$. Therefore, the area of the sector (the lateral surface area of the cone) is: $L A=\frac{2 \pi r}{2 \pi l} \pi l^{2}=\pi r l$ l
Spheres	$\begin{aligned} & \mathrm{V}=\frac{2}{3} \text { (volume of cylinder with same } \\ & \text { radius) } \\ & \mathrm{V}=\frac{2}{3} \text { (area of center circle) } \cdot \text { (height) } \\ & \mathrm{V}=\frac{2}{3} \quad\left(\pi r^{2}\right) \quad \cdot 2 r \\ & \mathrm{~V}=\frac{4}{3} \pi r^{3} \end{aligned}$ OR $\mathrm{V}=2 \cdot($ volume of cone with same radius) $\mathrm{V}=2 \cdot \frac{1}{3}$ (area of center circle) $) \cdot($ height $)$ $\mathrm{V}=2 \cdot \frac{1}{3} \quad\left(\pi r^{2}\right) \quad \cdot 2 r$ $\mathrm{V}=\frac{4}{3} \pi r^{3}$	$\begin{aligned} & \text { S.A. }=4 \cdot \text { area of center circle } \\ & \text { S.A. }=4 \cdot \pi r^{2} \end{aligned}$

