Three-Dimensional Solids Toolkit POSSIBLE SOLUTIONS

	Volume	Surface Area
Prisms	V = (# cubes in bottom layer) • (# layers) V = (area of base) • (height) An oblique prism has the same volume as a right prism of the same base area and height.	S.A. = Add up the areas (area = length • width) of all the rectangles that make up the solid An oblique prism does <i>not</i> have the same surface area as a right prism with the same base area and height.
Cylinders	V = (# cubes in bottom layer) \cdot (# layers) V = (area of circular base) \cdot (height) V = (πr^2) \cdot h An oblique cylinder has the same volume as a right cylinder of the same base area and height.	height of cylinder, h perimeter of circular base, $2\pi r$ S.A. = area of bases and "top" = $(\pi r^2)(2)$ + area of lateral face = $(2\pi r)(h)$
Pyramids	$V = \frac{1}{3}$ (volume of prism with same base and height) $V = \frac{1}{3}$ (area of base) • (height) height height height	S.A. = area of polygon base + area of lateral triangular faces Lateral surface area does not include the base.

Three-Dimensional Solids Toolkit POSSIBLE SOLUTIONS

		Volume	Surface Area
		$\frac{1}{3}$ (volume of cylinder w/ same	Unroll the cone to create a sector. The
		base and height) $\frac{1}{3}$ (area of circular base) \cdot (height)	radius of the sector is the slant height, l , of the cone, and the arc length is the circumference of the base of the cone, $2\pi r$.
	V =	$\frac{1}{3}$ (πr^2) · h	Therefore, the area of the sector (the lateral surface area of the cone) is:
Cones			$LA = \frac{2\pi r}{2\pi l}\pi l^2 = \pi rl$
		2r	l
	V =	$\frac{2}{3}$ (volume of cylinder with same radius)	
	V =	$\frac{2}{3}$ (area of center circle) • (height)	S.A. = $4 \cdot \text{area of center circle}$
	V =	$\frac{2}{3} \text{ (area of center circle)} \cdot \text{(height)}$ $\frac{2}{3} (\pi r^2) \cdot 2r$ $\frac{4}{3} \pi r^3$	S.A. = $4 \cdot \pi r^2$
	V =	$\frac{4}{3}\pi r^3$	radius
Spheres	OR		
	V =	2 · (volume of cone with same radius)	center
	V =	$2 \cdot \frac{1}{3}$ (area of center circle) · (height)	
	V =	$2 \cdot \frac{1}{3} \qquad (\pi r^2) \qquad \cdot \ 2r$ $\frac{4}{3}\pi r^3$	
	V =	$\frac{4}{3}\pi r^3$	